The Scaphoid

Michael Elvey MB BS BSc FRCS (Tr & Orth) Dip Hand Surg 12.6.19 NWT Speciality Teaching

Aims

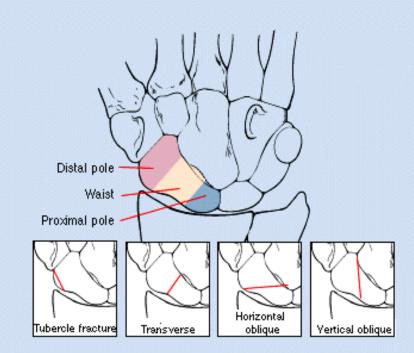
- To consider the implications of scaphoid anatomy and biomechanics on fracture behaviour
- To provide evidence-based investigation and treatment algorithms for scaphoid fractures
- To describe a systematic approach to evaluate scaphoid nonunions
- To provide an evidence based algorithm for the management of scaphoid nonunions

Background

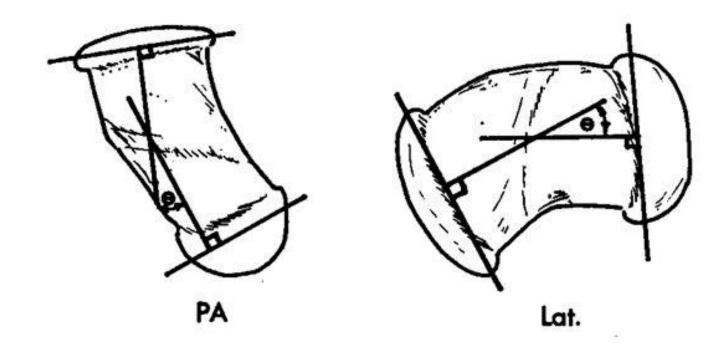
- Carpal Keystone
- Comprises 60-70% of carpal fractures
- Low energy, young adult

Anatomy

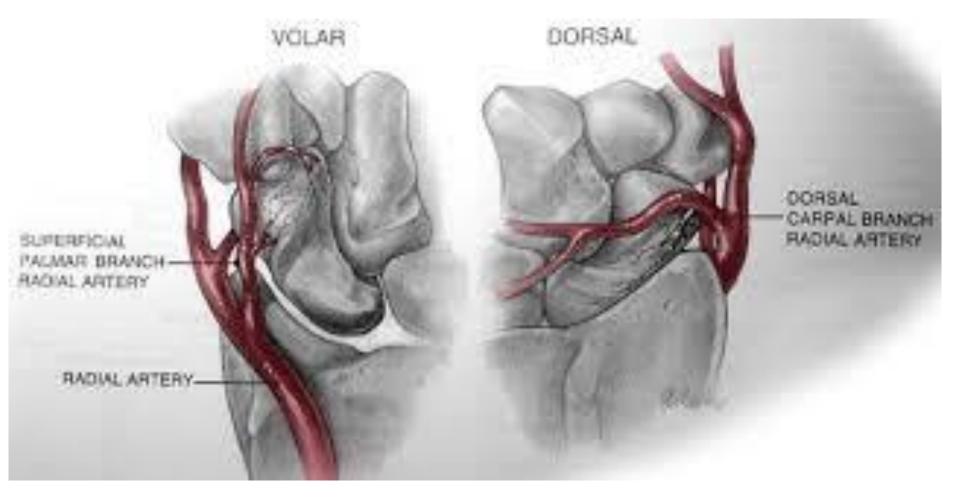
• Shape


– Boat / Twisted Peanut / Bean

• 80% cartilage


Anatomy

- Boat / Twisted Peanut / Bean
- 80% cartilage
- Divided into 3 segments


Anatomy

- Boat / Twisted Peanut / Bean
- 80% cartilage
- Interscaphoid angle =40deg cor & 30deg sag

Blood Supply & Implications

Blood Supply & Implications

Biomechanics

- Hyperextension & axial Load > pure hyperextension > hyperflexion
- Biology vs Stability
- RF for Non-union:
 - Rx delay >4/52
 - **–** PP
 - Displacement (>1mm)
 - -AVN
 - Smoking

Natural History

- Union Rates
 - All scaphoid #'s 85-90%
 - Undisplaced + Cast (88-95%)
 - Displaced + Cast (<50%)</p>
- Deformity
 - Flexion & DISI
- Arthritis
 - 50-90%

Clinical Assessment

- History
 - Traumatic beware the old injury
- Examination
 - Palpate 3 main parts of scaphoid.
 - Sensitivity >90%, Specificity 74-80%

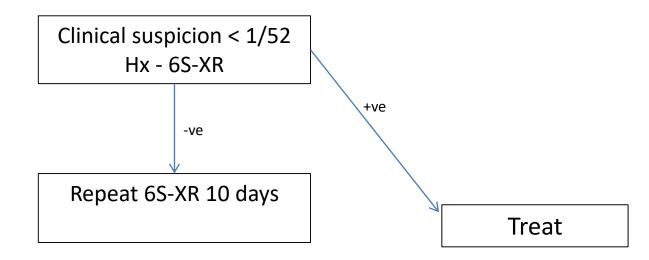
Investigations

Imaging

- XR
 - 6 views
 - Will miss up to 25%
- CT vs MRI vs BS

<u>Mallee WH¹, Wang J, Poolman RW, Kloen P, Maas M, de Vet HC</u>, <u>Doornberg JN</u>. Computed tomography versus magnetic resonance imaging versus bone scintigraphy for clinically suspected scaphoid fractures in patients with negative plain radiographs. <u>Cochrane Database Syst</u> <u>Rev.</u> 2015 Jun 5;(6):CD010023.

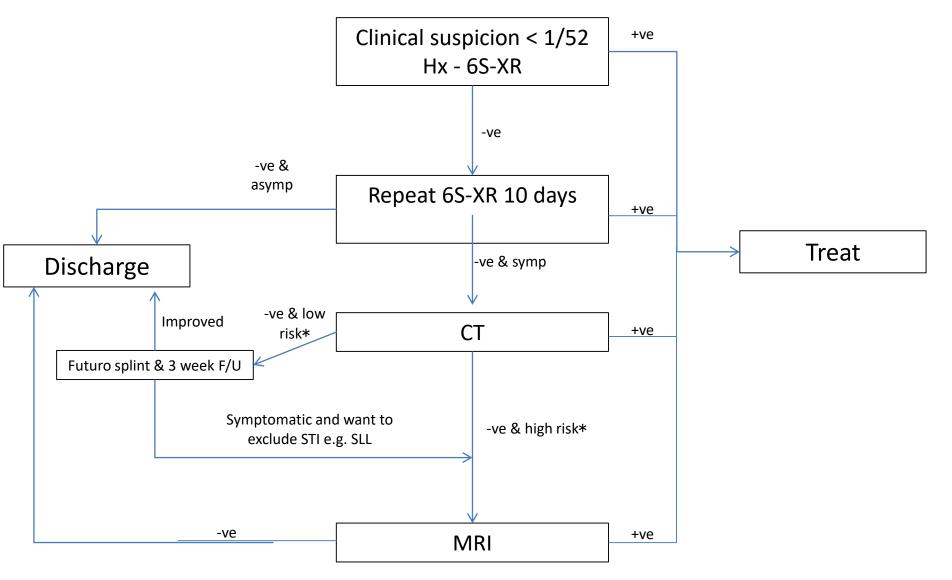
<u>de Zwart AD</u>^{1,2}, <u>Beeres FJ</u>³, <u>Rhemrev SJ</u>⁴, <u>Bartlema K</u>⁵, <u>Schipper IB</u>⁵. Comparison of MRI, CT and bone scintigraphy for suspected scaphoid fractures. <u>Eur J Trauma Emerg Surg.</u> 2016 Dec;42(6):725-731. Epub 2015 Nov 10.


<u>Mallee W¹</u>, <u>Doornberg JN</u>, <u>Ring D</u>, <u>van Dijk CN</u>, <u>Maas M</u>, <u>Goslings JC</u>. Comparison of CT and MRI for diagnosis of suspected scaphoid fractures. <u>J Bone Joint Surg Am</u>. 2011 Jan 5;93(1):20-8.

My Summation

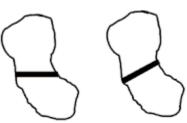
"Neither MRI, CT nor BS are 100 % accurate in diagnosing occult scaphoid fractures. MRI and CT miss fractures, and BS over-diagnose"

"CT will miss approx 5% of fractures. MRI will miss approx 2%. Bone scan will miss <0.5%. Bone scan will over treat 10% of fractures, CT 1%, and MRI 3%"


My Investigation Algorithm

My Investigation Algorithm

EBM Scaphoid Investigation Algorithm



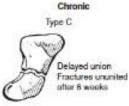
Classifications

Classification 1

Transverse

Russe





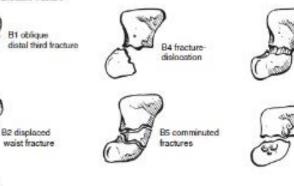
Horizontal Oblique

Vertical Oblique

Herbert and Fisher

Type D

D1 fibrous


nonunion

D2 sclerotic

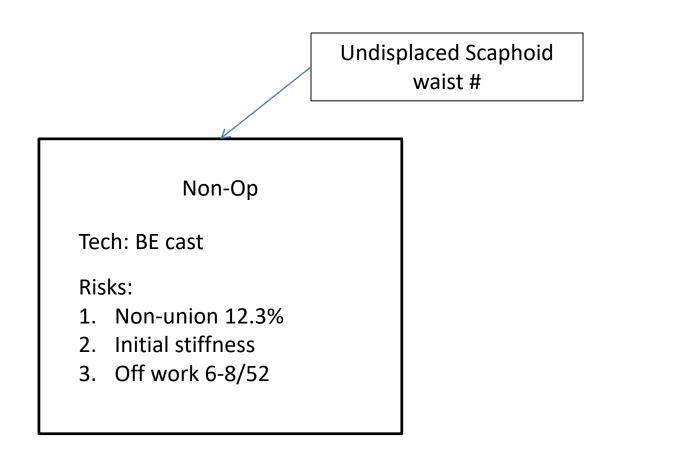
nonunion (pseudoarthrosis)

Type B unstable fracture

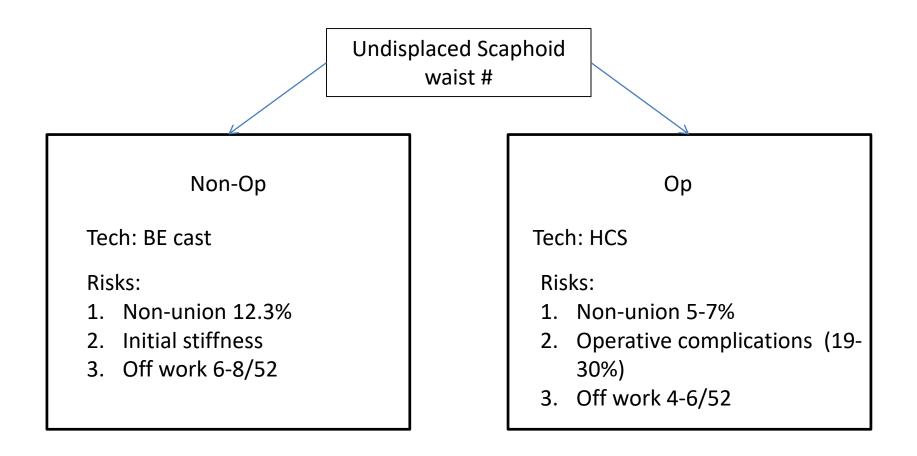
B3 proximal third fractures

Treatment of Scaphoid Fractures

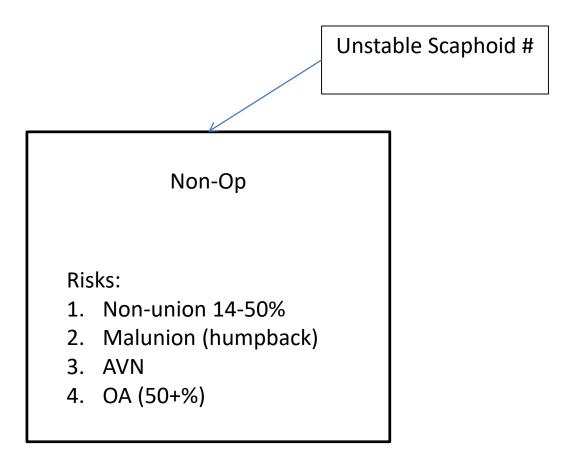
Operative or Non-Operative

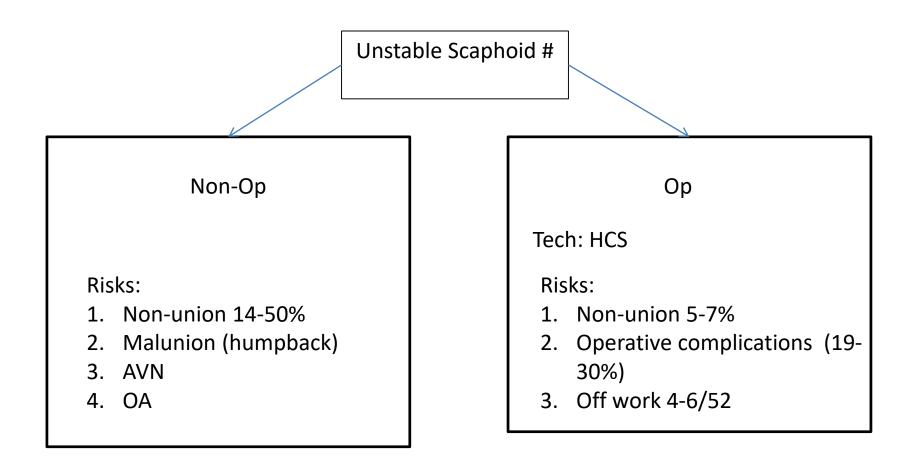

Acute Scaphoid # Treatment

Non Operative	Controversial	Operative
Tubercle Fracture	Undisplaced waist	Any visible displacement (>1mm)
Incomplete		Lateral interscaphoid angle >35 degrees
		Bone loss / comminution
		Perilunate # dislocation
		Undisplaced Proximal Pole


Acute Scaphoid # Treatment

Non Operative	Controversial	Operative
Tubercle #	Undisplaced waist #	Any visible displacement (>1mm)
Incomplete #		Lateral interscaphoid angle >35 degrees
		Bone loss / comminution
		Perilunate # dislocation
		Undisplaced Proximal Pole #


EBM Undisplaced Waist


EBM Undisplaced Waist

EBM Unstable scaphoid

EBM Unstable Waist

Non-operative Management

- Cast Immobilization
 - Thumb free wrist immobilisation prevents scaphoid ROM¹
 - Long arm casts offer no benefit ²
 - Position of wrist in cast does not affect healing ³
 - 90-95% undisplaced scaphoid waist fractures will heal ⁴

- 1. Clay NR, Dias JJ, Costigan PS, Gregg PJ, Barton NJ. Need the thumb be immobilised in scaphoid fractures? A randomised prospective trial. J Bone Joint Surg [Br] 1991;73-B:828-32.
- 2. McAdams TR, Spisak S, Beaulieu CF, Ladd AL. The effect of pronation and supination on the minimally displaced scaphoid fracture. Clin Orthop 2003-411:255-9

^{3.} Hambidge JE, Desai VV, Schranz PJ, Compson JP, Davis TR, Barton NJ. Acute fractures of the scaphoid. Treatment by cast immobilisation with the wrist in flexion or extension? J Bone Joint Surg [Br] 1999;81-B:91-2.

^{4.} Dias JJ, Taylor M, Thompson J, Brenkel IJ, Gregg PJ. Radiographic signs of union of scaphoid fractures. An analysis of inter-observer agreement and reproducibility. J Bone Joint Surg [Br] 1988;70-B:299-301

Non-operative Management

- Cast Immobilization
 - Thumb free wrist immobilisation prevents scaphoid ROM $_{1}^{1}$
 - Long arm casts offer no benefit ²
 - Position of wrist in cast does not affect healing ³
 - 90-95% undisplaced scaphoid waist fractures will heal⁴
 - Inconvenience and work restrictions & Plaster Disease

- 1. Clay NR, Dias JJ, Costigan PS, Gregg PJ, Barton NJ. Need the thumb be immobilised in scaphoid fractures? A randomised prospective trial. J Bone Joint Surg [Br] 1991;73-B:828-32.
- 2. McAdams TR, Spisak S, Beaulieu CF, Ladd AL. The effect of pronation and supination on the minimally displaced scaphoid fracture. Clin Orthop 2003-411:255-9
- 3. Hambidge JE, Desai VV, Schranz PJ, Compson JP, Davis TR, Barton NJ. Acute fractures of the scaphoid. Treatment by cast immobilisation with the wrist in flexion or extension? J Bone Joint Surg [Br] 1999;81-B:91-2.
- 4. Dias JJ, Taylor M, Thompson J, Brenkel IJ, Gregg PJ. Radiographic signs of union of scaphoid fractures. An analysis of inter-observer agreement and reproducibility. J Bone Joint Surg [Br] 1988;70-B:299-301

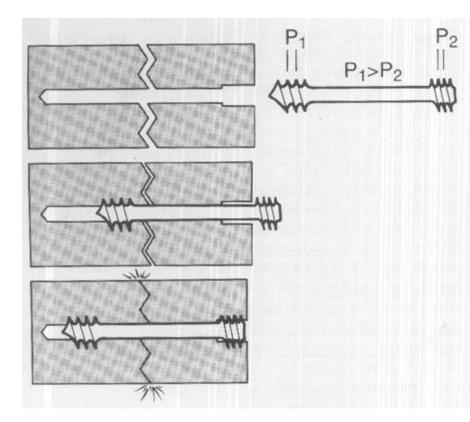
Operative Management

• Open/Closed Reduction + Internal Fixation

Operative Management

- Open/Closed Reduction + Internal Fixation
 - Kirschner Wire
 - Screw
 - Bioresorbable Screw
 - Staple
 - Plate

Operative Management


- Open/Closed Reduction + Internal Fixation
 - Kirschner Wire

- <u>Screw</u>

- Bioresorbable Screw
- Staple
- <u>Plate</u>

Headless Compression Screws

 Cartilage covered = No callous = primary bone healing = need for rigid stabilisation

Modifiable Factors

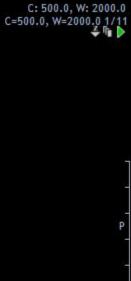
- Central Screw Placement
 - Shorter healing times
 - Greater stiffness, load, and load to failure

Modifiable Factors

Modifiable Factors

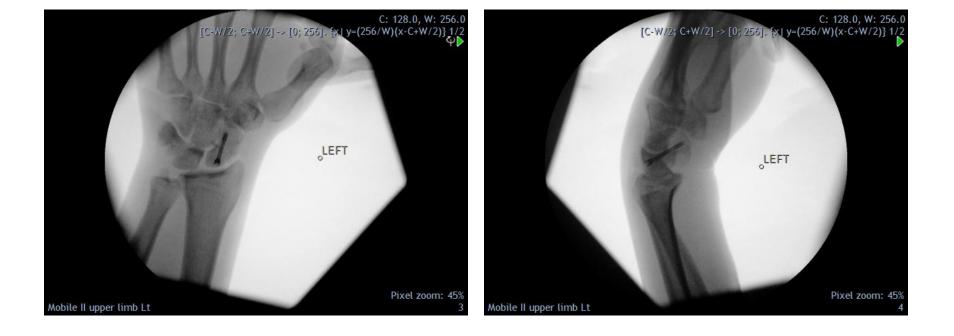
•Longer and wider screws = increased rigidity

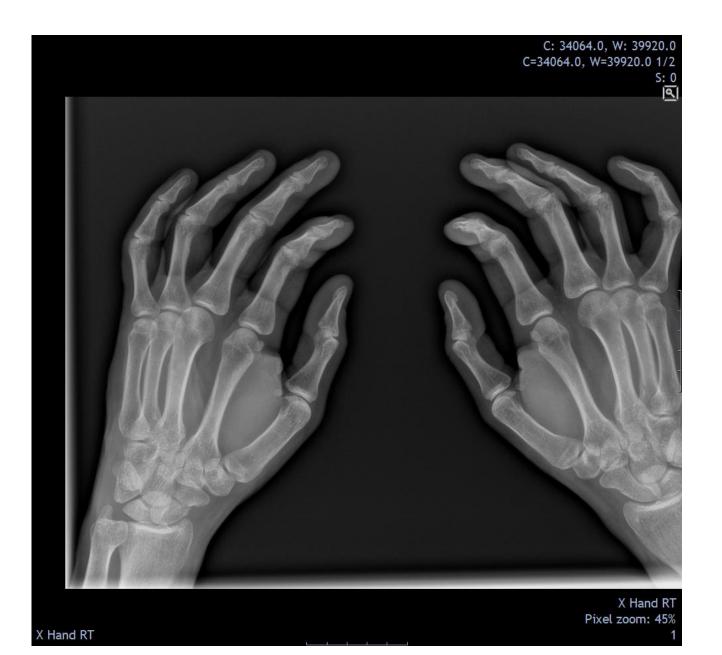
Controversies


- Cost effectivness
 - Arora et al quicker union and 7 week quicker return to work offset cost of procedure
 - Davis et al ORIF cost effective & increased QALYs
- Children
 - Distal > W & PP. Surg indicated for NU
- Bone Growth Simulators
 - Mayr et al Exogen healed non –op factures in 43 vs
 62 days. 81% healed @ 6/52 vs 54.6%
- Biologic Stimulators
 - Bilic et al OP-1 reduced healing times.

Useful Papers

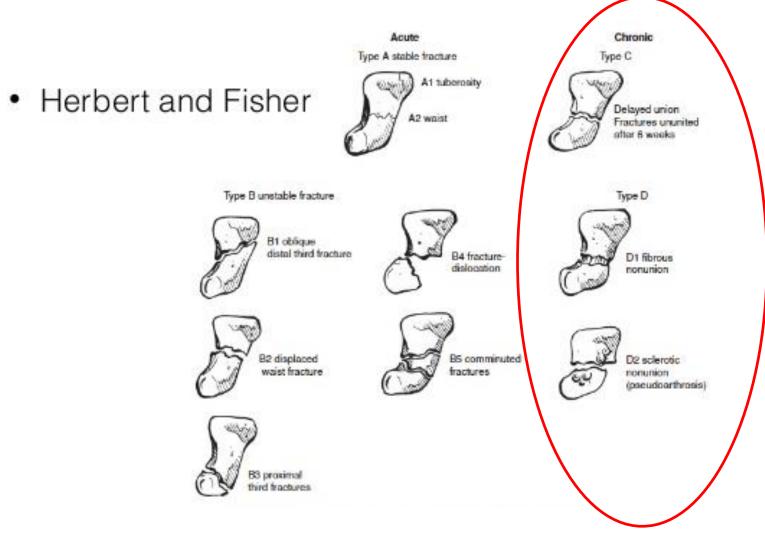
- Bond CD et al. Percutaneous screw fixation or cast immobilization for nondisplaced scaphoid fractures. J Bone Joint Surg. 2001
 - Faster time to union and return to military duty. Same union rate
- McQueen M et al. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomized study. J Bone Joint Surg. 2008
 - Surg = Faster time to union. Faster ret to work and sport. Non sig higher union rate in surg. Low complications
- Davis TR, Prediction of outcome of non-operative treatment of acute scaphoid waist fracture, Ann RCS, 2013
 - 6 in 1. POP has 89% union. Cant predict union on XR or MRI. >2mm dorsal gap on CT increases risk of NU. MRI vascularity of PP doesn not correlate with union. MU has no sig effect at 1yr
- Dias et al, Displaced scaphoid waist fractures, JBJS 2011
 - CT or will miss 40% of displaced #'s. NU = 50%. H:L best meaure of displ. NU = 50% OA.
- SWIFFT
 - On going
 - Pragmatic MC RCT of min displaced waist. POP v any surg. PRWE





3MM SAG LT SCAPHOID

Pixel zoom: 46%



Scaphoid Nonunions

Scaphoid Nonunions

Scaphoid NU Background

- Definition = 6-9 months
- Delayed presentation common 'sprain'
- Natural History = carpal collapse and degenerative arthritis (Scaphoid Nonunion Advanced Collapse / SNAC)

• Do all nonunions progress to SNAC wrists?

Background

- 56% of nonunions will develop symptomatic osteoarthritis
- 2% of unions will develop symptomatic osteoarthritis
- Treatment objective = healed scaphoid with anatomical alignment

H Duppe, O Johnell, G Lundborg, et al.: Long-term results of fracture of the scaphoid. A follow-up study of more than thirty years. *J Bone Joint Surg Am.* 76 (2):249-252 1994<u>8113260</u>

How to evaluate scaphoid nonunions

Scaphoid Non Union Evaluation

• Patient characteristics

Scaphoid Non Union Evaluation

Patient Characteristics
 Fracture characteristics

1. Duration

- 1. Duration
 - Chronicity increases chances of OA / Deformity / Carpal Instability

- 1. Duration
- 2. Age

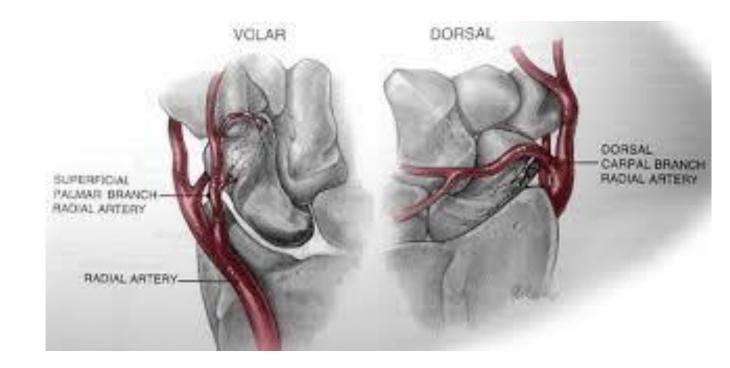
- 1. Duration
- 2. Age
 - Treatment differs between the classic young pt and elderly low demand pt

- Duration
- Age
- Pain / Dysfunction

- Duration
- Age
- Pain / Dysfunction

 Established arthritis with tolerable pain / dysfunction should be considered for nonoperative management

- Duration
- Age
- Pain / Dysfunction
- Activity level / Requirements


- Duration
- Age
- Pain / Dysfunction
- Activity level / Requirements
 - No mandate for operative repair salvage procedures available later

- Duration
- Age
- Pain / Dysfunction
- Activity level / Requirements
- Co-morbidities

- Duration
- Age
- Pain / Dysfunction
- Activity level / Requirements
- Co-morbidities
 - Complex surgery further disadvantaged by smoking, poor compliance, DM, IA steroids etc

1. Where is the non-union?

- 1. Where is the non-union?
 - More proximal = higher risk of dysvascular /AVN

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
 - Humpback
 - DISI

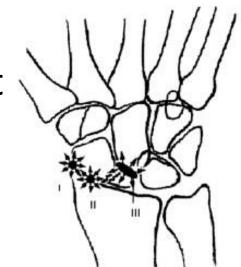
- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
 - Humpback
 - DISI
 - Try to correct deformity at the time of surgery

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation
 - Suggest instability with bone loss
 - May require structural graft

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery?

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery
 - Existing metalwork? Space for new screw / plate?


- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery
- 6. PP dysvascular?

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery
- 6. PP dysvascular?
 - Vascularity is important
 - Determining vascularity is controversial
 - Punctate bleeding / Histology

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery?
- 6. PP dysvascular?
- 7. Salvageability of fragment

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation
- 5. Previous Surgery
- 6. PP dysvascular?
- 7. Salvageability of fragment
 - Cant repair an irreparable fragment

- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation?
- 5. Previous Surgery
- 6. PP dysvascular?
- 7. Salvagebility of fragment
- 8. SNAC?

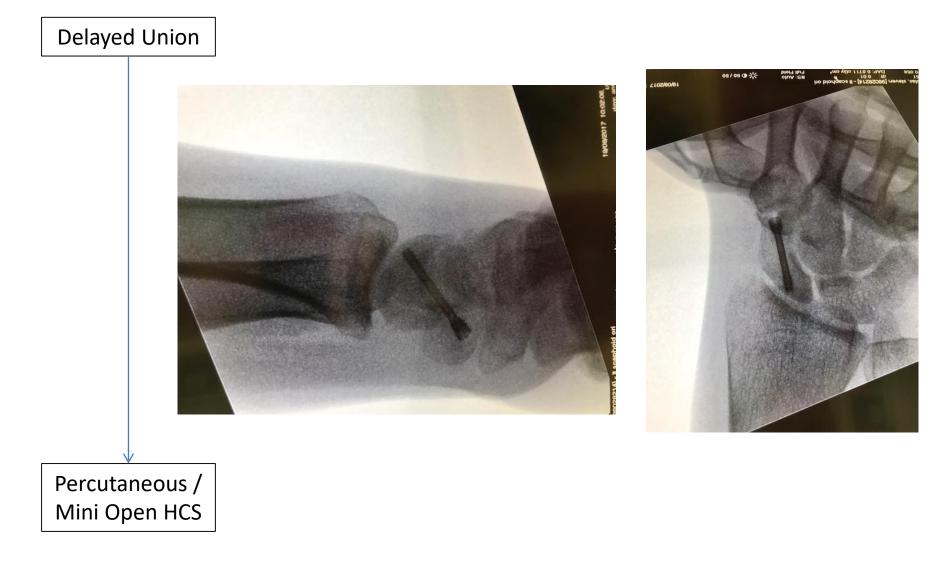
- 1. Where is the non-union?
- 2. Displaced vs Undisplaced?
- 3. Deformity?
- 4. Comminution / Cyst Formation
- 5. Previous Surgery
- 6. PP dysvascular?
- 7. Salvagebility of fragment
- 8. SNAC?
 - Radiocarpal / Midcarpal /DRUJ

Stratification

- Delayed Union
- Waist nonunion
- Proximal Pole nonunion
- Dysvascular nonunion

Delayed Union

Delayed Union


Delayed Union

Delayed Union

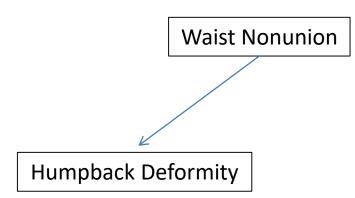
•NU without substantial bone loss require rigid fixation only if adequate perfusion

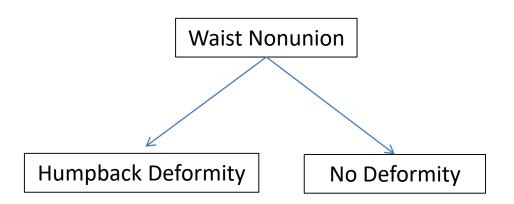
•Presentation >4/52 have poor union rates with casting alone

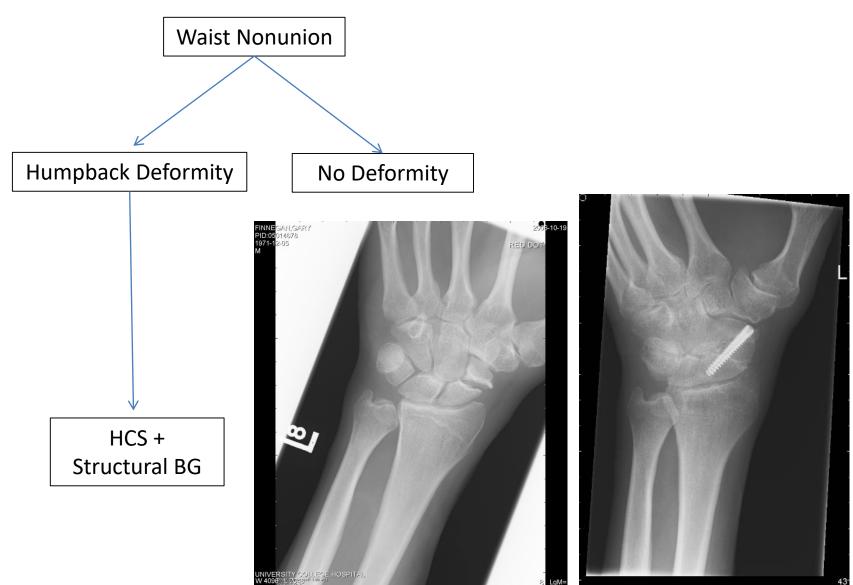
Delayed Union

Waist Nonunion

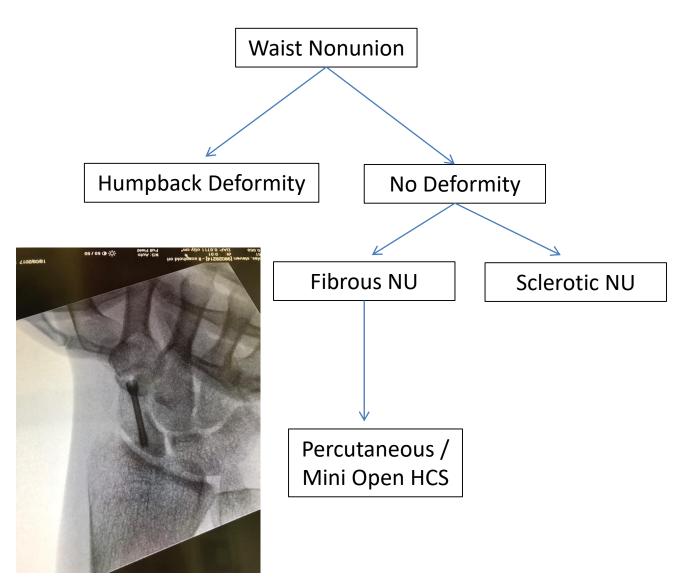
•Shah et al – fibrous non unions heal well with rigid stabilisation alone

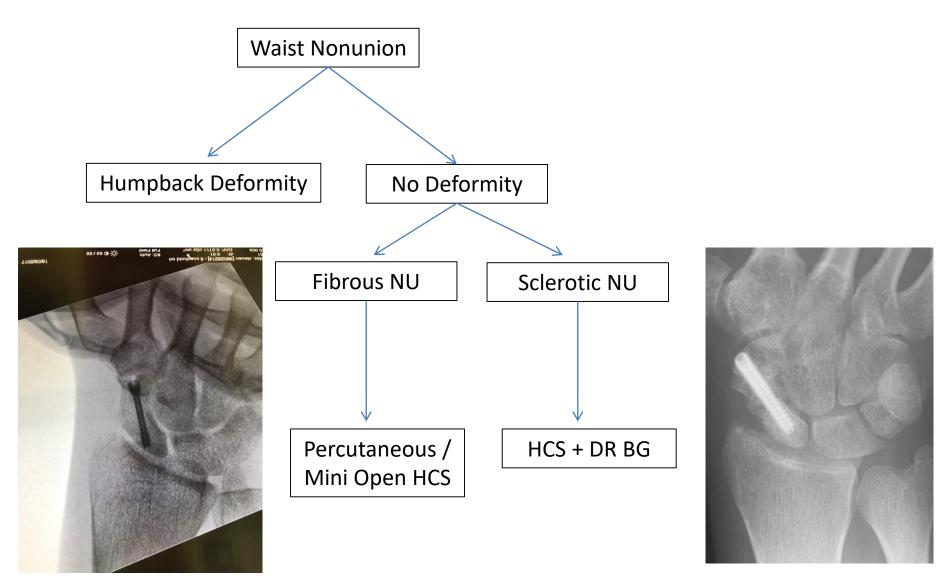

•Slade et al – NU with minimal resorption and <2mm sclerosis heal well without BG


•NU with varying degrees of deformity / bone loss / resorption (most common) require BG


•Cohen et al - Degree of malunion is tolerable

•Merrell et al - no diff in iliac crest v distal radius BG & screw superior to K wire


- 1. J Shah, WA Jones: Factors affecting the outcome in 50 cases of scaphoid nonunion treated with Herbert screw fixation. J Hand Surg [Br]. 23 (5):680-685 1998 9821620
- 2. JF Slade 3rd, WB Geissler, AP Gutow, et al.: Percutaneous internal fixation of selected scaphoid nonunions with an arthroscopically assisted dorsal approach. J Bone Joint Surg Am. 85 (Suppl 4):20-32 2003
- 3. 37MS Cohen, JB Jupiter, K Fallahi, et al.: Scaphoid waist nonunion with humpback deformity treated without structural bone graft. *J Hand Surg* [*Am*].38 (4):701-705 2013 23415167
- 4. 145GA Merrell, SW Wolfe, JF Slade 3rd: Treatment of scaphoid nonunions: quantitative meta-analysis of the literature. J Hand Surg [Am]. 27 (4):685-691 2002 12132096



Waist Nonunion Waist Nonunion No Deformity Humpback Deformity 4 Sclerotic NU **Fibrous NU**

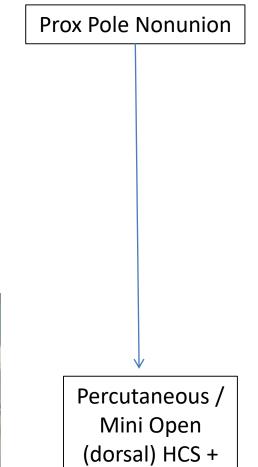
Proximal Pole Nonunion

Prox Pole Nonunion

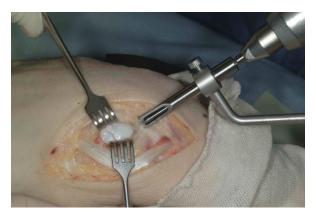
Proximal Pole Nonunion

•Minimal displacement / deformity – open dorsal + cancellous bone graft.

Prox Pole Nonunion


•Growing body of evidence for percutaneous bone grafting

JF Slade 3rd, T Gillon: Retrospective review of 234 scaphoid fractures and nonunions treated with arthroscopy for union and complications. *Scand J Surg.* 97 (4):280-2892008 <u>19211381</u> W Geissler, JF Slade: Fractures of the carpal bones. SW Wolfe RN Hotchkiss WCPederson et al. *Green's operative hand surgery.* ed 6 2011 Elsevier/Churchill Livingstone Philadelphia Chu PJ, JT Shih: Arthroscopically assisted use of injectable bone graft substitutes for management of scaphoid nonunions. *Arthroscopy.* 27 (1):31-37 2011 <u>20934844</u>


Proximal Pole Nonunion

DR BG

Dysvascular Nonunion (AVN)

Dysvascular Nonunion

Dysvascular Nonunion (AVN)

•No evidenced based guideline on which cases most benefit from VBG

Dysvascular Nonunion

1. 97Y Hori, S Tamai, H Okuda, et al.: Blood vessel transplantation to bone. J Hand Surg [Am]. 4 (1):23-33 1979

^{2. 197}T Sunagawa, AT Bishop, K Muramatsu: Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: a canine experimental study. *J Hand Surg [Am]*. 25 (5):849-859 2000

Dysvascular Nonunion

•No evidenced based guideline on which cases most benefit from VBG

Dysvascular Nonunion

- •We don't know;
 - •Histology of treated nonunions
 - •How to assess vascularity
 - •Is internal fixation more important than ischaemia

Dysvascular Nonunion

•No evidenced based guideline on which cases most benefit from VBG

Dysvascular Nonunion

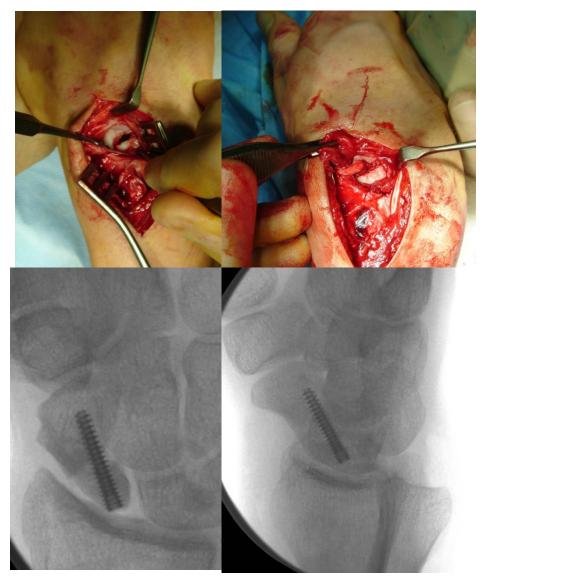
- •We dont know;
 - •Histology of treated nonunions
 - •How to assess vascularity
 - •Is internal fixation more important than ischaemia

•Original research came from canine models

- •1986 Shi Fasciosteal flap
- •1991 Zaidemberg 1,2 ICSRA
- •Mathoulin volar carpal artery
- •Sotereanos dorsal capsular pedicle
- •Doi Free medial femoral condyle
- 1. 97Y Hori, S Tamai, H Okuda, et al.: Blood vessel transplantation to bone. J Hand Surg [Am]. 4 (1):23-33 1979
- 2. 197T Sunagawa, AT Bishop, K Muramatsu: Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: a canine experimental study. *J Hand Surg [Am]*. 25 (5):849-859 2000
- 3. 228C Zaidemberg, JW Siebert, C Angrigiani: A new vascularized bone graft for scaphoid nonunion. J Hand Surg [Am]. 16 (3):474-478 1991 1861030
- 4. 180Shi ZM, Xu ZG: Experimental study and clinical use of the fasciosteal flap. Plast Reconstr Surg. 78 (2):201-210 1986 3523560
- 5. 137C Mathoulin, F Brunelli: Further experience with the index metacarpal vascularized bone graft. J Hand Surg [Br]. 23 (3):311-317 1998 9665516
- 6. 188**DG Sotereanos, NA Darlis, ZH Dailiana, et al.**: A capsular-based vascularized distal radius graft for proximal pole scaphoid pseudarthrosis. *J Hand Surg* [*Am*]. 31 (4):580-587 2006 <u>16632051</u>
- 7. 53K Doi, T Oda, T Soo-Heong, et al.: Free vascularized bone graft for nonunion of the scaphoid. J Hand Surg [Am]. 25 (3):507-519 2000 10811756

Nonunion Management Algorithm

•Consensus of use;


Lack of punctate bleeding intraoperatively

Dysvascular Nonunion

•Persistent NU following previous surgery

- 1. 97Y Hori, S Tamai, H Okuda, et al.: Blood vessel transplantation to bone. *J Hand Surg* [Am]. 4 (1):23-33 1979
- 2. 197T Sunagawa, AT Bishop, K Muramatsu: Role of conventional and vascularized bone grafts in scaphoid nonunion with avascular necrosis: a canine experimental study. *J Hand Surg [Am]*. 25 (5):849-859 2000

Nonunion Management Algorithm

Dysvascular Nonunion
\checkmark
ORIF + BG (?VBG)

• SNAC 1

- SNAC 1
 - Radial styloidectomy

• SNAC 1

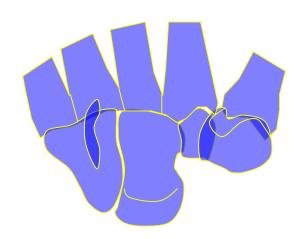
Radial styloidectomy

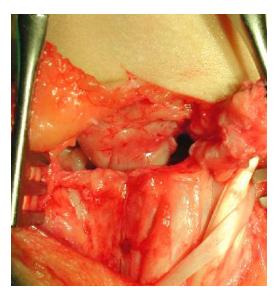
• SNAC 2

• SNAC 1

Radial styloidectomy

- SNAC 2
 - Scaphoidectomy
 - 4CF / PRC



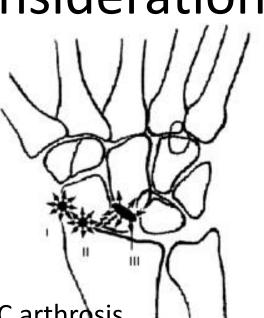


• SNAC 1

Radial styloidectomy

- SNAC 2
 - Scaphoidectomy + 4CF
 - PRC

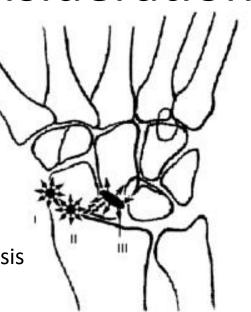
Additional Considerations


• SNAC 1

Radial styloidectomy

- SNAC 2
 - Scaphoidectomy + 4CF
 - PRC
 - Distal pole excision if no SC / LC arthrosis

Additional Considerations


- SNAC 1
 - Radial styloidectomy
- SNAC 2
 - Scaphoidectomy + 4CF
 - PRC
 - Distal pole excision if no SC / LC arthrosis
- Prox Pole <5mm
 - Scaphoidectomy + 4CF
 - PRC
 - Osteochondral medial free femoral flap

DISI

Additional Considerations

- SNAC 1
 - Radial styloidectomy
- SNAC 2
 - Scaphoidectomy + 4CF
 - PRC
 - Distal pole excision if no SC / LC arthrosis
- Prox Pole <5mm
 - Scaphoidectomy + 4CF
 - PRC
 - Osteochondral medial free femoral flap
- Previous Surgery
 - Place new screw from opposite side

Evidence – Based Scaphoid Nonunion Algorithm

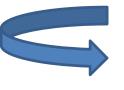
1. Define No formal consensus. "Failure of the scaphoid to heal after 9 months with no evidence of radiological healing within the last 3 months" ^{1, 2}

2. Assess History, Examination, Imaging (Scaphoid series, CT +/-MRI

Patient Factors:

- 1. Duration 2. Pain / Dysfunction
- 3. Age

- 4. Activity levels
- 5. Co-morbidities

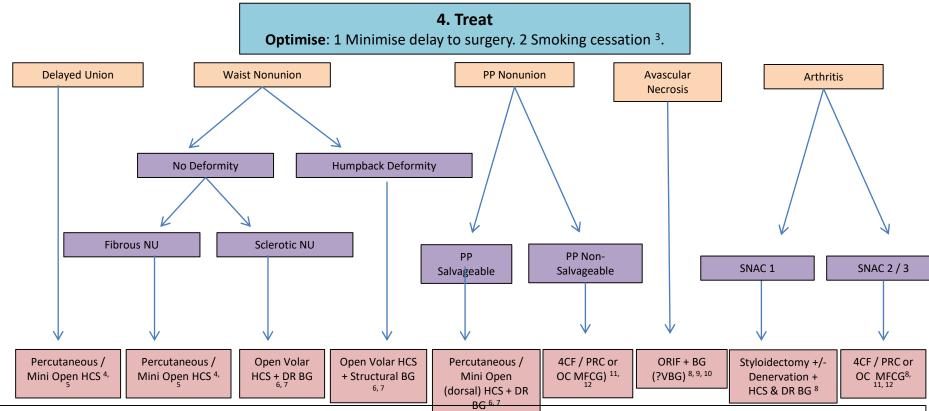

Nonunion Factors:

- Location?
 Deformity
- - ,
- Prior Surgery?
 SNAC?
- 2. Displacement?
 4. Comminution / Cyst
 Formation?
 6. Proximal pole AVN?
 8. Fragment salvagability?

References

1. Higgins A, Glover M, Yang Y, Bayliss S, Meads C, Lord J. Exogen ultrasound bone healing system for long bone fractures with non-union or delayed healing: A nice medical technology guidance. Appl Health Econ Health Policy. 2014, 12: 477-84

2. Dias JJ. Definition of union after acute fracture and surgery for fracture of the non-union scaphoid. J Hand Surg Br 2001. 26: 321-325



Abbreviations

- SNAC scaphoid nonunion advanced collapse
- AVN avascular necrosis
- PP proximal Pole
- 4CF 4 corner fusion
- PRC proximal row carpectomy
- OC MFCG osteochondral medial femoral condyle graft
- DR distal radius
- BG bone graft
- HCS headless compression screw

3. Stratify

- Delayed Union
- Waist non-union
 - Fibrous v Sclerotic?
 - Humpback deformity?
- Proximal Pole non-union
 - No evidence AVN
 - Possible AVN

References

3. Little CP, Burston BJ, Hopkinson-Wooley J, Burge P. Failure of surgery for scaphoid non-union is associated with smoking. J Hand surg Br 2006. 31B:6: 252-255

4. J Shah, WA Jones: Factors affecting the outcome in 50 cases of scaphoid nonunion treated with Herbert screw fixation. J Hand Surg [Br]. 23 (5):680-685 1998

5. McQueen MM, Gelbke MK, Wakefield A, Will EM, Gaebler C. Percutaneous screw fixation versus conservative treatment for fractures of the waist of the scaphoid: a prospective randomised study. J Bone Joint Surg Br. 2008 Jan;90(1):66-71.

6. GA Merrell, SW Wolfe, JF Slade 3rd: Treatment of scaphoid nonunions: quantitative meta-analysis of the literature. J Hand Surg [Am]. 27 (4):685-691 2002

7. MS Cohen, JB Jupiter, K Fallahi, et al.: Scaphoid waist nonunion with humpback deformity treated without structural bone graft. J Hand Surg [Am].38 (4):701-705 2013

8. Ferguson DO, Shanbhag V, Hedley H, Reichert I, Lipscombe S, Davis TRC. Scaphoid fracture non-union: A Systematic Review. J Hand surg (E). Jun 2016, 41E (5) 492-500

9. C Zaidemberg, JW Siebert, C Angrigiani: A new vascularized bone graft for scaphoid nonunion. J Hand Surg [Am]. 16 (3):474-478 1991

10. DG Sotereanos, NA Darlis, ZH Dailiana, et al.: A capsular-based vascularized distal radius graft for proximal pole scaphoid pseudarthrosis. J Hand Surg [Am]. 31 (4):580-587 2006

11. Watson HK, Ballet FL. The SLAC wrist: scapholunate advanced collapse pattern of degenerative arthritis. J Hand Surg Am. 1984;9:358-365

12. Pulos N, Kollitz KM, Bishop AT, Shin AY. Free vascularised medial femoral bone graft after failed scaphoid non-union surgery. JBJS Am 2018; 100(16): 1379-1386

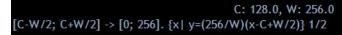
Useful Papers

- K. Rancy et al. Success of scaphoid nonunion surgery is independent of proximal pole vascularity JHS Eu 2018
 - 35 Nus treated with NV autograft. Looked at pre op MRI, intra op bleed and histo. 9 had ischamia on MRI. 28/35 had decreased intraop bleeding. 4/33 had tissue necrosis. 33/35 healed by 12 weeks. Conc = pp infarction is rare and VBG rarely required.
- Kim J et al. Non-vascularized iliac bone grafting for scaphoid nonunion with avascular necrosis. Journal of Hand Surgery (European Volume) 2018,
 - 24 pt with pp #'s with MRi showing AVN had NV IC BG. Sever humpback had fisk wedge. Others simple cancellous graft. 22/24 united. DISC -, no high-quality randomized trial or prospective study has compared vascularized and non-vascularized bone grafts in scaphoid fractures with AVN. Conc – can use NVBG for MRI proven AVN.
- Mathoulin C, Treatment of the scaphoid humpback deformity is correction of the dorsal intercalated segment instability deformity critical? JHS E 2018
 - Nice summary on all research on effect of DISI. No consensus or evidence base on whether to correct but lots of theoretical benefits. Op trchinique involves flexing wrist and driving a perc RL wire.

Prognosis for Scaphoid NU Healing

- Merrell et al
 - Unstable NU = 94% union with HCS & corticocancellous graft (vs 77% k wire)
 - No diff b/n immediate ROM & 6/52 cast
 - AVN 88% union with VBG vs 47% BG
- Inoue et al
 - 90% union with HCS & BG at 2 yr
 - RF failure = AVN pp, delay to surgery, instability, prox #

^{1.} GA Merrell, SW Wolfe, JF Slade 3rd: Treatment of scaphoid nonunions: quantitative meta-analysis of the literature. J Hand Surg [Am]. 27 (4):685-691 2002


^{2. 104}G Inoue, K Shionoya: Herbert screw fixation by limited access for acute fractures of the scaphoid. J Bone Joint Surg Br. 79 (3):418-421 1997

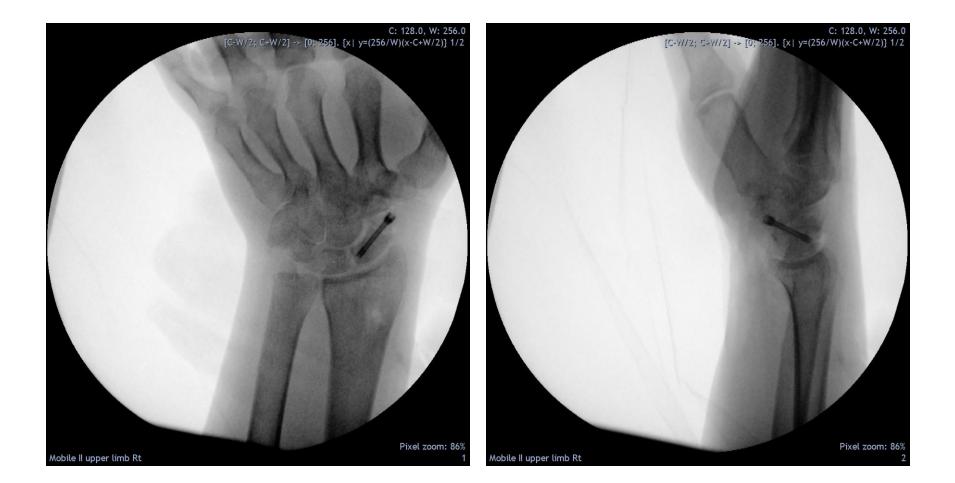
BSSH Scaphoid Nonunion Study Group 2018

- Smoking
 - combined analysis of all scaphoid nonunions revealed that smoking status did not affect the risk of nonunion (p=0.13). By contrast,
 - Smoking affected the outcome of proximal pole fractures (union rates for non-smokers v smokers = 77% v 43%: P=0.01) but not waist fractures (union rates for non-smokers v smokers = 72% v 64%: P=0.47).
- Delay to Surgery
 - When all scaphoid nonunion locations were analysed together it was found that a delay to surgery had a significant adverse effect on the rate of union (P=0.02).
 - When investigated delay influenced the outcome for waist nonunions (P=0.004), but not proximal nonunions (p=0.6).
 - An interval of more than 1 year appeared deleterious for scaphoid waist nonunions.
- Bone Graft
 - Our findings suggest that currently in the United Kingdom non-vascularised iliac crest bone graft remains the most popular choice for scaphoid non-union surgery, utilized in 42% of all cases (50% of scaphoid waist nonunions and 21% of proximal pole nonunions).
 - Non-vascularised local graft was the second most popular for scaphoid waist non unions (27%) followed by local vascularised graft (17%).
 - Vascularised local bone graft influenced the union rate of proximal pole fractures nonunions (vascularised v non vascularised = 82% v 58%: P= 0.04) but it did not affect the union rate for waist fractures nonunions (vascularised v non vascularised = 70% v 69-74%: P= 0.39).
 - We found no significant difference between the union rates for either waist or proximal nonunion cases treated with non-vascularised distal radius or iliac crest bone graft.

C=500.0, W=2000.0 1/11 Slice: 3 mm Couch: 33 Pos: HFS FoV: 127 mm LP Pixel zoom: 61% F: YD 3MM COR RT WRIST 167 mA 120 kV 1/3 Image no: 12 3MM COR RT WRIST Image 12 of 26

C: 500.0, W: 2000.0

Gantry: 0°


Time: 299 ms

Summary

- Risk of nonunion for undisplaced acute fractures is 9-12%.
- Risk of nonunion for displaced acute fractures is <50%
- 56% of scaphoid nonunions progress to SNAC wrist
- 2% of scaphoid unions progress to SNAC wrists
- Consider all fracture and patient characteristics before embarking on treatment